Newswise — Each year, the Physical Sciences and Engineering (PSE) directorate at the U.S. Department of Energy’s (DOE) Argonne National Laboratory recognizes exceptional early-career researchers breaking into their fields with the PSE Early Investigator Named Awards. In 2025, the lab announced that six awardees would be receiving support in the form of funding and mentorship to conduct groundbreaking research aligned with Argonne’s strategic mission.
One member of the 2025 cohort is Maria Żurek, an assistant physicist in Argonne’s Physics (PHY) division, who studies the fundamental structure of protons and neutrons using the Continuous Electron Beam Accelerator Facility (CEBAF) at the DOE’s Thomas Jefferson National Accelerator Facility. For the PSE Early Investigator Named Award, Żurek will work under the guidance of Sylvester Joosten, interim leader of the Medium Energy group at Argonne, on a proposal titled, “Seeing the Unseen: Precision Calorimetry for 3D Nucleon Imaging.” In particle physics experiments, calorimetry refers to detection and analysis methods used to calculate particle energy.
“The national lab environment allows me to lead large projects and collaborate with fantastic scientists and engineers across divisions and institutions.” — Maria Żurek, Argonne assistant physicist
Here, Żurek discusses her research and other work she supports at Argonne.
Q: What role do you play at the lab?
A: I am an experimental nuclear physicist in the Physics division’s Medium Energy group, and I am working to understand the fundamental structure of the visible matter that makes up our world.
Q: What initiatives or projects are you most excited about being involved in at Argonne?
A: The national lab environment allows me to lead large projects and collaborate with fantastic scientists and engineers across divisions and institutions. I have the opportunity to work with talented postdocs on uncovering the inner workings of protons and neutrons using data from the CLAS12 experiment at Jefferson Lab, and I co-lead the development of electromagnetic calorimetry for the ePIC detector at the future Electron-Ion Collider (EIC) at the DOE’s Brookhaven National Laboratory. I am a team player, and doing great science with great people is the best job in the world.
Q: Can you talk a bit about the research you’re conducting for your proposal for which you received the 2025 PSE Early Investigator Named Award?
A: My PSE Early Investigator Named Award project tackles a hard problem: improving calorimetry for hadrons — protons, neutrons and other similar subatomic particles — in the medium-energy range typical of experiments at Jefferson Lab. Neutral particles, like neutrons, and another subatomic particle called muons are notoriously difficult to measure in this range. I will run preliminary simulations to test a practical dual-readout approach that separates light generated by different types of subatomic interactions, with the aim of getting cleaner, more precise energy and position measurements. The goal is to open new opportunities for 3D studies of proton and neutron structure and to provide evidence that can guide the next generation of detector designs.
Q: What do you like most about your job?
A: The people I work with, the diversity of problems I get to solve and the fact that I am always learning something new.
Q: How does your work support the lab’s mission?
A: In my work I analyze data from world-class DOE user facilities, using measurements to sharpen our most fundamental understanding of how the universe is put together. I design and test modern detector technologies that let us see proton and neutron structure with greater clarity. This work uses Argonne’s strengths in hands-on experimentation and computation, and it delivers practical capability, validated hardware, documented procedures and reconstruction tools, for national research facilities today and for the EIC tomorrow. I work with engineers, scientists and trainees across Argonne to get from concept to instrument to reliable results. That is my piece of the mission.
Q: What do you enjoy doing outside of work?
A: I love hunting for hole-in-the-wall restaurants in Chicago’s neighborhoods and suburbs with my husband, and I never tire of admiring the city’s architecture, always walking with my head up. I love going to ballet, opera, musicals, sports games and concerts. A year ago, I started aerial gymnastics, and I even appreciate the bruises because they mean I am getting better. I enjoy leaf peeping in local parks and running our annual “fat squirrel contest” with friends. As someone who moved here, I still carry a newcomer’s curiosity — and ope! — I’m always ready to explore one more corner of American and Midwestern culture.
Q: What other sorts of career or professional development opportunities has Argonne provided?
A: I’ve gotten a lot from Argonne’s Mentorship Program, on both sides. As a mentee, the conversations with my mentors pushed me to set clear goals and get honest feedback; they also gave me a better view of how the lab works across divisions. As a mentor, I’ve learned to give useful feedback and to connect postdocs with the right people and resources. It’s simple, but it works because it creates time for focused conversations. Beyond mentoring, I’ve benefited from proposal workshops, science communication sessions and serving on several internal review committees.
Q: What encouraged you to get involved in the scientific discipline you are in?
A: I have always been drawn to big questions. In school I loved math, physics and chemistry, but I also loved literature for the way a good story pulls you in. A great high school physics teacher showed me that science can do the same thing: It tells a story about how the world works. I thought I might become a teacher, but during university I spent undergraduate internships at Fermilab (another DOE national laboratory), where I saw how national labs “zoom in” on particles to understand the building blocks of matter. That experience shifted my path. I wanted to be part of that discovery process.
Since then, I have followed the thread from curiosity to experiment — first, learning how to measure, then learning how to ask better questions, until it became a career in nuclear physics.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology by conducting leading-edge basic and applied research in virtually every scientific discipline. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.
The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

