On most mornings, Jeremy D. Brown eats an avocado. But first, he gives it a little squeeze. A ripe avocado will yield to that pressure, but not too much. Brown also gauges the fruit’s weight in his hand and feels the waxy skin, with its bumps and ridges.
“I can’t imagine not having the sense of touch to be able to do something as simple as judging the ripeness of that avocado,” says Brown, a mechanical engineer who studies haptic feedback — how information is gained or transmitted through touch — at Johns Hopkins University.
Many of us have thought about touch more than usual during the COVID-19 pandemic. Hugs and high fives rarely happen outside of the immediate household these days. A surge in online shopping has meant fewer chances to touch things before buying. And many people have skipped travel, such as visits to the beach where they might sift sand through their fingers. A lot goes into each of those actions.
“Anytime we touch anything, our perceptual experience is the product of the activity of thousands of nerve fibers and millions of neurons in the brain,” says neuroscientist Sliman Bensmaia of the University of Chicago. The body’s natural sense of touch is remarkably complex. Nerve receptors detect cues about pressure, shape, motion, texture, temperature and more. Those cues cause patterns of neural activity, which the central nervous system interprets so we can tell if something is smooth or rough, wet or dry, moving or still.
Scientists at the University of Chicago attached strips of different materials to a rotating drum to measure vibrations produced in the skin as a variety of textures move across a person’s fingertips. Matt Wood/Univ. of Chicago
Neuroscience is at the heart of research on touch. Yet mechanical engineers like Brown and others, along with experts in math and materials science, are studying touch with an eye toward translating the science into helpful applications. Researchers hope their work will lead to new and improved technologies that mimic tactile sensations.
As scientists and engineers learn more about how our nervous system responds to touch stimuli, they’re also studying how our skin interacts with different materials. And they’ll need ways for people to send and receive simulated touch sensations. All these efforts present challenges, but progress is happening. In the near term, people who have lost limbs might recover some sense of touch through their artificial limbs. Longer term, haptics research might add touch to online shopping, enable new forms of remote medicine and expand the world of virtual reality.
“Anytime you’re interacting with an object, your skin deforms,” or squishes a bit.
Sliman Bensmaia
Good vibrations
Virtual reality programs already give users a sense of what it’s like to wander through the International Space Station or trek around a natural gas well. For touch to be part of such experiences, researchers will need to reproduce the signals that trigger haptic sensations.
Our bodies are covered in nerve endings that respond to touch, and our hands are really loaded up, especially our fingertips. Some receptors tell where parts of us are in relation to the rest of the body. Others sense pain and temperature. One goal for haptics researchers is to mimic sensations resulting from force and movement, such as pressure, sliding or rubbing.
“Anytime you’re interacting with an object, your skin deforms,” or squishes a bit, Bensmaia explains. Press on the raised dots of a braille letter, and the dots will poke your skin. A soapy glass slipping through your fingers produces a shearing force — and possibly a crash. Rub fabric between your fingers, and the action produces vibrations.
Four main categories of touch receptors respond to those and other mechanical stimuli. There’s some overlap among the types. And a single contact with an object can affect multiple types of receptors, Bensmaia notes.
One type, called Pacinian corpuscles, sits deep in the skin. They are especially good at detecting vibrations created when we interact with different textures. When stimulated, the receptors produce sequences of signals that travel to the brain over a period of time. Our brains interpret the signals as a particular texture. Bensmaia compares it to the way we hear a series of notes and recognize a tune.
Deep feelings
Four main types of touch receptors respond to mechanical stimulation of the skin: Meissner corpuscles, Merkel cells, Ruffini endings and Pacinian corpuscles. Some respond better to certain kinds of stimuli than others. Recent studies have focused on the deep-skin Pacinian corpuscles, which respond to vibrations created when fingers rub against textured materials.
T. TibbittsT. Tibbitts Source: Scholarpedia.org
“Corduroy will produce one set of vibrations. Organza will produce another set,” Bensmaia says. Each texture produces “a different set of vibrations in your skin that we can measure.” Such measurements are a first step toward trying to reproduce the feel of different textures.
Additionally, any stimulus meant to mimic a texture sensation must be strong enough to trigger responses in the nervous system’s touch receptors. That’s where work by researchers at the University of Birmingham in England comes in. The vibrations from contact with various textures create different kinds of wave energy. Rolling-type waves called Rayleigh waves go deep enough to reach the Pacinian receptors, the team reported last October in Science Advances. Much larger versions of the same types of waves cause much of the damage from earthquakes.
Not all touches are forceful enough to trigger a response from the Pacinian receptors. To gain more insight into which interactions will stimulate those receptors, the team looked at studies that have collected data on touches to the limbs, head or neck of dogs, dolphins, rhinos, elephants and other mammals. A pattern emerged. The group calls it a “universal scaling law” of touch for mammals.
For the most part, a touch at the surface will trigger a response in a Pacinian receptor deep in the skin if the ratio is 5-to-2 between the length of the Rayleigh waves resulting from the touch and the depth of the receptor. At that ratio or higher, a person and most other mammals will feel the sensation, says mathematician James Andrews, lead author of the study.
Universality of touch
A pattern in the ratio of length of Rayleigh waves moving through skin while touching an object and the depth of Pacinian touch receptors suggests that the same amount of deformation in the skin of several different mammals, except rodents, will produce similar sensations.
Ratio of Rayleigh wavelength to touch receptor depth in various mammals T. TibbittsT. Tibbitts Source: J. Andrews et al/Science Advances 2020
Also, the amount of skin displacement needed to cause wavelengths long enough to trigger a sensation by the Pacinian receptors will be the same across most mammal species, the group found. Different species will need more or less force to cause that displacement, however, which may depend on skin composition or other factors. Rodents did not fit the 5–2 ratio, perhaps because their paws and limbs are so small compared with the wavelengths created when they touch things, Andrews notes.
Beyond that, the work sheds light on “what types of information you’d need to realistically capture the haptic experience — the touch experience — and send that digitally anywhere,” Andrews says. People could then feel sensations with a device or perhaps with ultrasonic waves. Someday the research might help provide a wide range of virtual reality experiences, including virtual hugs.
Online tactile shopping
Mechanical engineer Cynthia Hipwell of Texas A&M University in College Station moved into a new house before the pandemic. She looked at some couches online but couldn’t bring herself to buy one from a website. “I didn’t want to choose couch fabric without feeling it,” Hipwell says.
“Ideally, in the long run, if you’re shopping on Amazon, you could feel fabric,” she says. Web pages’ computer codes would make certain areas on a screen mimic different textures, perhaps with shifts in electrical charge, vibration signals, ultrasound or other methods. Touching the screen would clue you in to whether a sweater is soft or scratchy, or if a couch’s fabric feels bumpy or smooth. Before that can happen, researchers need to understand conditions that affect our perception of how a computer screen feels.
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional
Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.