Researchers have found water vapour in the disc around a young star, which is exactly where planets may be forming.
Water is a key ingredient for life on Earth and is also thought to play a significant role in planet formation, yet, until now, astronomers have never been able to map how water is distributed in a stable, cool disc — the type of disc that offers the most favourable conditions for planets to form around stars.
For the first time, astronomers have weighed the amount of water vapour around a typical planet-forming star.
The new findings were made possible thanks to the Atacama Large Millimeter/submillimeter Array (ALMA) – a collection of telescopes in the Chilean Atacama Desert. The University of Manchester’s Jodrell Bank Centre for Astrophysics hosts the UK ALMA Regional Centre Node (UK ARC) which supports UK astronomers using ALMA.
Dr Anita Richards, Senior Visiting Fellow at The University of Manchester and previously a member of the UK ARC, played a key role in verifying the operation of the ‘Band 5’ receiver system, which was essential for ALMA to produce a detailed image of the water.
The observations, published in the journal Nature Astronomy, reveal at least three times as much water as in all of Earth’s oceans in the inner disc of the young Sun-like star HL Tauri, located 450 light-years away from Earth in the constellation Taurus.
Stefano Facchini, an astronomer at the University of Milan, Italy, who led the study, said: “I had never imagined that we could capture an image of oceans of water vapour in the same region where a planet is likely forming.”
Co-author Leonardo Testi, an astronomer at the University of Bologna, Italy, added: “It is truly remarkable that we can not only detect but also capture detailed images and spatially resolve water vapour at a distance of 450 light-years from us.”
These observations with ALMA, which show details as small as human hair at a kilometre distance, allow astronomers to determine water distribution in different disc regions.
A significant amount of water was found in the region where a known gap in the HL Tauri disc exists – a place where a planet could potentially be forming. Radial gaps are carved out in gas- and dust-rich discs by orbiting young planet-like bodies as they gather up material and grow. This suggests that this water vapour could affect the chemical composition of planets forming in those regions.
But, observing water with a ground-based telescope is no mean feat as the abundant water vapour in Earth’s atmosphere degrades the astronomical signals.
ALMA, operated by the European Southern Observatory (ESO) and its international partners, is located at about 5000 metres elevation and is built in a high and dry environment specifically to minimise this degradation, providing exceptional observing conditions. To date, ALMA is the only facility able to map water distribution in a cool planet-forming disc.
The dust grains that make up a disc are the seeds of planet formation, colliding and clumping into ever larger bodies orbiting the star. Astronomers believe that where it is cold enough for water to freeze onto dust particles, things stick together more efficiently — an ideal spot for planet formation.
Members of the UK ARC are contributing to a major upgrade of ALMA, which, with ESO’s Extremely Large Telescope (ELT) also coming online within the decade, will provide even clearer views of planet formation and water’s role. In particular METIS, the Mid-infrared ELT Imager and Spectrograph, will give astronomers unrivalled views of the inner regions of planet-forming discs, where planets like Earth form.
Source: University of Manchester