Summary: A study in mice reveals that inflammation in the brain’s barrier, or the meninges, may seep into grey matter, fostering the progression of multiple sclerosis (MS).
Utilizing novel methods, the study provides evidence of a gradient of immune genes and inflammatory markers transitioning from the meninges into the brain tissue. The inflammation within the meninges, found in all types of MS, is suggested to contribute to the disease’s progression, including nerve demyelination, loss of new neurites, and grey matter volume decrease.
This research represents a significant stride in comprehending the brain damage mechanisms in MS.
Key Facts:
- Using spatial transcriptomics, researchers found increased activity of immune-related genes in the inflamed meninges of a mouse model, suggesting an upregulation of pro-inflammatory genes into the grey matter.
- This study provides the first characterization of a mouse model of meningeal inflammation and grey matter injury using spatial transcriptomics, presenting an important resource for future research.
- Despite the limitations of using a mouse model, the study offers critical insights into the development of grey matter injury in MS and suggests the need for future research using human samples.
Source: Life
A study in mice suggests that inflammation in the brain’s barrier, the meninges, may spill over into grey matter and cause changes that can contribute to progressive multiple sclerosis (MS).
The research, published today as a Reviewed Preprint in eLife, is described by the editors as an important study that advances our understanding of the mechanisms of brain damage in this autoimmune disease.
It involves the use of novel methods to provide what they say is convincing evidence for a gradient of immune genes and inflammatory markers from the meninges to the adjacent brain tissue in mice.
Inflammation within the meninges is found in all types of MS. There is mounting evidence to suggest this inflammation plays a pivotal role in the progression of the disease, including loss of the protective coating on nerves (demyelination), loss of new nerve sprouts (neurites) and decreased volume of grey matter.
“Grey matter injury is linked to disabling MS symptoms like cognitive dysfunction and depression,” explains Sachin Gadani, a neuroimmunology fellow at Johns Hopkins University School of Medicine, Baltimore, US, and a co-first author of the study alongside Saumitra Singh, Postdoctoral Research Fellow at Johns Hopkins University School of Medicine.
“Meningeal inflammation appears to be a critical driver of cortical grey matter pathology, but attempts to characterise the mechanism in an unbiased manner have been limited by the absence of spatially resolved data – that is, critical information about the anatomical relationship between meningeal inflammation and the underlying brain tissue.
“We set out to determine the patterns of gene activity in the meninges and the surrounding grey matter, while preserving the context about the position of those cells in the brain.”
Gadani, Singh and colleagues used an approach called spatial transcriptomics, whereby the pattern of gene activity in a tissue is measured and the information is then pieced back together to show the pattern of gene activity in the original location.
They started by measuring gene activity in the inflamed meninges in a mouse model of MS against the meninges in healthy mice, and then compared this to the expression of genes in the surrounding grey matter in both groups of mice.
As the team expected, they found an increased expression (upregulation) of genes related to immune cells and pathways, immune cell infiltration, and the activation of brain-specific immune cells called microglia.
To understand more about the proximity of this gene activity to the meningeal region, they analysed patterns of gene activity along a path from the meninges to the thalamus. All the groups of genes declined in activity with increasing distance from the inflamed meningeal region.
However, some genes showed a more gradual decline – particularly those involved in immune processes such as antigen processing and presentation. This suggests that some upregulation of pro-inflammatory genes had spilled over from the brain’s meningeal region into the grey matter.
“This is the first time a study has characterised a mouse model of meningeal inflammation and grey matter injury using spatial transcriptomics,” says co-first author Saumitra Singh. “We’ve provided a publicly available dataset from our work that we hope others can use in future research.”
A limitation of this study is that the spatial resolution may not be sufficient to distinguish between the meninges and surrounding grey matter with certainty.
Additionally, while the authors used a mouse model that represents many pathological features of MS, it does not fully represent human disease, and the analysis does not consider different timepoints in the development of MS. Despite this, the authors say their findings could pave the way for future studies using human samples.
“Our findings have revealed several candidate pathways in the development of grey matter injury. Future work should focus on spatial transcriptomics in human samples which, thanks to advances in technology, is now becoming more feasible,” concludes senior author Pavan Bhargava, Associate Professor of Neurology at Johns Hopkins University School of Medicine.
About this multiple sclerosis research news
Author: Emily Packer
Source: eLife
Contact: Emily Packer – eLife
Image: The image is credited to Neuroscience News
Original Research: Open access.
“Spatial Transcriptomics of Meningeal Inflammation Reveals Variable Penetrance of Inflammatory Gene Signatures into Adjacent Brain Parenchyma” by Sachin Gadani et al. eLife
Abstract
Spatial Transcriptomics of Meningeal Inflammation Reveals Variable Penetrance of Inflammatory Gene Signatures into Adjacent Brain Parenchyma
While modern high efficacy disease modifying therapies have revolutionized the treatment of relapsing-remitting multiple sclerosis, they are less effective at controlling progressive forms of the disease.
Meningeal inflammation is a recognized risk factor for cortical grey matter pathology which can result in disabling symptoms such as cognitive impairment and depression, but the mechanisms linking meningeal inflammation and grey matter pathology remain unclear.
Here, we performed MRI-guided spatial transcriptomics in a mouse model of autoimmune meningeal inflammation to characterize the transcriptional signature in areas of meningeal inflammation and the underlying brain parenchyma.
We found broadly increased activity of inflammatory signaling pathways at sites of meningeal inflammation, but only a subset of these pathways active in the adjacent brain parenchyma.
Sub-clustering of regions adjacent to meningeal inflammation revealed the subset of immune programs induced in brain parenchyma, notably the B cell mediated immune response and antigen processing/presentation. Trajectory gene and gene set modeling analysis confirmed variable penetration of immune signatures originating from meningeal inflammation into the adjacent brain tissue.
This work contributes a valuable data resource to the field, provides the first detailed spatial transcriptomic characterization in a model of meningeal inflammation, and highlights several candidate pathways in the pathogenesis of grey matter pathology.